Demand-Side Interventions

A Response to Breakthrough's Essay on Wildlife and Farmland

1. Kremen, C. Reframing the land-sparing/land-sharing debate for biodiversity conservation. Ann. N. Y. Acad. Sci. (2015). doi:10.1111/nyas.12845

2. Green, R. E. et al. The Future of Farming and Conservation. Science. 308, 1257 (2005).

3. Rudel, T. K. et al. Agricultural intensification and changes in cultivated areas, 1970-2005. Proc. Natl. Acad. Sci. U. S. A. 106, 20675–20680 (2009).

4. Lambin, E. F. & Meyfroidt, P. Global land use change, economic globalization, and the looming land scarcity. Proc. Natl. Acad. Sci. U. S. A. 108, 3465–72 (2011).

5. Ceddia, M. G., Bardsley, N. O., Gomez-y-Paloma, S. & Sedlacek, S. Governance, agricultural intensification, and land sparing in tropical South America. Proc. Natl. Acad. Sci. 111, 7242–7 (2014).

6. Macedo, M. N. et al. Decoupling of deforestation and soy production in the southern Amazon during the late 2000s. Proc. Natl. Acad. Sci. 109, 1341–6 (2012).

7. Gibbs, H. K. et al. Brazil’s Soy Moratorium. Science. 347, 377–378 (2015).

8. Machovina, B., Feeley, K. J. & Ripple, W. J. Biodiversity conservation: The key is reducing meat consumption. Sci. Total Environ. 536, 419–431 (2015).

9. Cassidy, E. S., West, P. C., Gerber, J. S. & Foley, J. A. Redefining agricultural yields: from tonnes to people nourished per hectare. Environ. Res. Lett. 8, 34015 (2013).

10. Tilman, D., Balzer, C., Hill, J. & Befort, B. L. Global food demand and the sustainable intensification of agriculture. Proc. Natl. Acad. Sci. 108, 20260–4 (2011).

11. Tomlinson, I. Doubling food production to feed the 9 billion: A critical perspective on a key discourse of food security in the UK. J. Rural Stud. 29, 81–90 (2013).

12. Center for a Liveable Future. Meat Consumption: Trends and Health Implications. Available at: Accessed 03/20/17.

13. Tilman, D. & Clark, M. Global diets link environmental sustainability and human health. Nature 515, 518–522 (2014).

14. Stoltzfus, R., Mullany, L. & Black, R. in Comparative Quantification of Health Risks: Global and Regional Burden of Disease Attributable to Selected Major Risk Factors (eds. Ezzati, M., Lopez, A., Rodgers, A. & Murray, C.) 163–210 (World Health Organization, 2004). doi:10.1007/s12263-011-0248-4

15. FAO. Global Food Losses and Food Waste – Extent, causes and prevention. Rome. (2011).

16. Ponisio, L. C. et al. Diversification practices reduce organic to conventional yield gap. Proc. R. Soc. B-Biological Sci. 282, 20141396 (2015).

17. Bengtsson, J., Ahnström, J. & Weibull, A. C. The effects of organic agriculture on biodiversity and abundance: a meta-analysis. J. Appl. Ecol. 42, 261–269 (2005).

18. Kremen, C. & Miles, A. Ecosystem Services in Biologically Diversified versus Conventional Farming Systems: Benefits, Externalities, and Trade-Offs. Ecol. Soc. 17, 40 (2012).

19. Foley, J. A. et al. Solutions for a cultivated planet. Nature 478, 337–342 (2011).

20. Bradley, S. E. K., Croft, T. N., Fishel, J. D. & Westoff, C. F. Revising Unmet Need for Family Planning: DHS Analytical Studies No. 25. Calverton, Maryland, USA: ICF International (2012)

21. Bongaarts, J. & Sinding, S. W. A Response to Critics of Family Planning Programs. Int. Perspect. Sex. Reprod. Health 35, 39–44 (2012).

22. United Nations Department of Economic and Social Affairs Population Division. World population prospects: The 2015 Revision, Key Findings and Advance Tables. (2015). doi:10.1017/CBO9781107415324.004

23. Bradshaw, C. J. A. & Brook, B. W. Human population reduction is not a quick fix for environmental problems. Proc. Natl. Acad. Sci. 2014, 1–6 (2014).

24. Lechenet, M., Dessaint, F., Py, G., Makowski, D. & Munier-Jolain, N. Reducing pesticide use while preserving crop productivity and profitability on arable farms. Nat. Plants 17008, (2017) 10.1038/nplants.2017.8.

25. Lechenet, M. et al. Reconciling Pesticide Reduction with Economic and Environmental Sustainability in Arable Farming. PLOS-ONE, 9, e97922. doi:10.1371/journal.pone.0097922 (2014).

26. Heong, K. L., Wong, L. & Delos Reyes, J. H. in Rice Planthoppers: Ecology, Management, Socio Economics and Policy (eds. Heong, K. L., Cheng, J. & Escalada, M. M.) 69–80 (Zheijang University Press, Hangzhou and Springer Science + Business Media, 2015). doi:10.1007/978-94-017-9535-7

27. De Beenhouwer, M., Aerts, R. & Honnay, O. A global meta-analysis of the biodiversity and ecosystem service benefits of coffee and cacao agroforestry. Agric. Ecosyst. Environ. 175, 1–7 (2013).

28. Frishkoff, L. O. et al. Loss of avian phylogenetic diversity in neotropical agricultural systems. Science. 345, 1343–1346 (2014).

29. Bhagwat, S. A., Willis, K. J., Birks, H. J. B. & Whittaker, R. J. Agroforestry: a refuge for tropical biodiversity? Trends Ecol. Evol. 23, 261–267 (2008).

30. Murgueitio, E., Calle, Z., Uribe, F., Calle, A. & Solorio, B. Native trees and shrubs for the productive rehabilitation of tropical cattle ranching lands. For. Ecol. Manage. 261, 1654–1663 (2011).

31. IPES-Food. From Uniformity to Diversity: A paradigm shift from industrial agriculture to diversified agroecological systems. International Panel of Experts on Sustainable Food systems. (2016).

32. Garibaldi, L. A. et al. Farming Approaches for Greater Biodiversity, Livelihoods, and Food Security. Trends Ecol. Evol. (2016), in press.

33. Kremen, C., Iles, A. & Bacon, C. M. Diversified Farming Systems: An agro-ecological, systems-based alternative to modern industrial agriculture. Ecol. Soc. 17, 44 (2012).

34. Letourneau, D. K. et al. Does plant diversity benefit agroecosystems? A synthetic review. Ecol. Appl. 21, 9–21 (2011).

35. Khan, Z., Midega, C., Pittchar, J., Pickett, J. & Bruce, T. Push–pull technology: a conservation agriculture approach for integrated management of insect pests, weeds and soil health in Africa. Int. J. Agric. Sustain. 9, 162–170 (2011).

36. Iverson, A. L. et al. Do polycultures promote win-wins or trade-offs in agricultural ecosystem services? A meta-analysis. J. Appl. Ecol. 51, 1593–1602 (2014).

37. Environmental Protection Agency. Benefits of Neonicotinoid Seed Treatments to Soybean Production. (2014). Available at: Accessed 3/21/17.

38. Pretty, J. N. et al. Resource-conserving agriculture increases yields in developing countries. Environ. Sci. Technol. 40, 1114–1119 (2006).

39. Parmentier, S. Scaling-up Agroecological Approaches: What, Why and How? Oxfam, Belgium.(2014).

40. Isbell, F. et al. Benefits of increasing plant diversity in sustainable agroecosystems. J. press.(2017)

41. Ponisio, L. & Ehrlich, P. Diversification, Yield and a New Agricultural Revolution: Problems and Prospects. Sustainability 8, 1118 (2016).

42. Garibaldi, L. A. et al. Mutually beneficial pollinator diversity and crop yield outcomes in small and large farms. Science. 351, 388–391 (2016).

43. Blaauw, B. R. & Isaacs, R. Flower plantings increase wild bee abundance and the pollination services provided to a pollination-dependent crop. J. Appl. Ecol. 51, 890–898 (2014).

44. Davis, A. S., Hill, J. D., Chase, C. A, Johanns, A. M. & Liebman, M. Increasing cropping system diversity balances productivity, profitability and environmental health. PLoS One 7, e47149 (2012).

45. Pywell, R. F. et al. Wildlife-friendly farming increases crop yield: evidence for ecological intensification. Proc. Biol. Sci. 282, 20151740- (2015).

46. Morandin, L. A. & Winston, M. L. Pollinators provide economic incentive to preserve natural land in agroecosystems. Agric. Ecosyst. Environ. 116, 289–292 (2006).

47. Holt-Gimenez, E. Measuring farmers’ agroecological resistance after Hurricane Mitch in Nicaragua: a case study in participatory, sustainable land management impact monitoring. Agric. Ecosyst. Environ. 93, 87–105 (2002).

48. Lotter, D. W., Seidel, R. & Liebhardt, W. The performance of organic and conventional cropping systems in an extreme climate year. Am. J. Altern. Agric. 18, 146–154 (2003).

49. Lin, B. B. Resilience in Agriculture through Crop Diversification: Adaptive Management for Environmental Change. Bioscience 61, 183–193 (2011).