Is Precision Agriculture the Way to Peak Cropland?

The Unsung Hero of Agricultural Innovation

1. Ramankutty, N., Evan, A. T., Monfreda, C. & Foley, J. a. Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000. Global Biogeochem. Cycles 22, 1–19 (2008).

2. FAO. Inputs - Land. FAOSTAT (2015). Available at: (Accessed: 22nd May 2015)

3. Gibbs, H. K. et al. Tropical forests were the primary sources of new agricultural land in the 1980s and 1990s. Proc. Natl. Acad. Sci. U. S. A. 107, 16732–7 (2010).

4. WWF. Living Planet Report 2016. (2016).

5. Angel, S., Parent, J., Civco, D. L., Blei, A. & Potere, D. The dimensions of global urban expansion: Estimates and projections for all countries, 2000–2050. Prog. Plann. 75, 53–107 (2011).

6. Gerland, P. et al. World population stabilization unlikely this century. Science (80-. ). 234, (2014).

7. Tilman, D., Balzer, C., Hill, J. & Befort, B. L. Global food demand and the sustainable intensification of agriculture. Proc. Natl. Acad. Sci. 108, 1–5 (2011).

8. Evenson, R. E. & Gollin, D. Assessing the impact of the green revolution, 1960 to 2000. Science 300, 758–762 (2003).

9. Press, A. Spectacular Increases in Crop Yields in the United States in the Twentieth Century Author ( s ): G . F . Warren Published by : Weed Science Society of America and Allen Press Stable URL : Education / Teaching / Extensio. 12, 752–760 (2016).

10. Pingali, P. Green Revolution: Impacts, Limits, and the path ahead. Proc. Natl. Acad. Sci. 109, 12302–12308 (2012).

11. Egli, D. B. Comparison of corn and soybean yields in the United States: Historical trends and future prospects. Agron. J. 100, 79–88 (2008).

12. Report, W. R. & Findings, I. Creating a Sustainable Food Future. (2013).

13. Grassini, P., Eskridge, K. M. & Cassman, K. G. Distinguishing between yield advances and yield plateaus in historical crop production trends. Nat. Commun. 4, 1–11 (2013).

14. Cassman, K. G. Ecological intensification of cereal production systems: yield potential, soil quality, and precision agriculture. Proc. Natl. Acad. Sci. U. S. A. 96, 5952–9 (1999).

15. Fischer, T., Byerlee, D. & Edmeades, G. Crop yields and global food security. Aust. Cent. Int. Agric. Res. 660 (2014).

16. Hertel, T. W., Ramankutty, N. & Baldos, U. L. C. Global market integration increases likelihood that a future African Green Revolution could increase crop land use and CO2 emissions. Proc. Natl. Acad. Sci. U. S. A. 111, 1–6 (2014).

17. Stevenson, J. R., Villoria, N., Byerlee, D., Kelley, T. & Maredia, M. Green Revolution research saved an estimated 18 to 27 million hectares from being brought into agricultural production. Proc. Natl. Acad. Sci. U. S. A. (2013). doi:10.1073/pnas.1208065110

18. Griffin, K. The Political Economy of Agrarian Change: An Essay on the Green Revolution. (Springer, 1979).

19. Fuglie, K. in Productivity Growth in Agriculture: An International Perspective (eds. Fuglie, K., Wang, S. L. & Ball, V. E.) (CAB International, 2012).

20. OECD. OECD Compendium of Agri-environmental Indicators. (OECD Publishing, 2013). doi:10.1787/9789264186217-en

21. Lassaletta, L., Billen, G., Grizzetti, B., Anglade, J. & Garnier, J. 50 Year Trends in Nitrogen Use Efficiency of World Cropping Systems: the Relationship Between Yield and Nitrogen Input To Cropland. Environ. Res. Lett. 9, 105011 (2014).

22. Zhang, X. et al. Managing nitrogen for sustainable development. Nature 528, 51–59 (2015).

23. Fernandez-Cornejo, J. & Nehring, R. Pesticide Use in US Agriculture: 21 Selected Crops, 1960-2008. 1960–2008 (2014).

24. Field to Market. Environmental and Socioeconomic Indicators for Measuring Outcomes of On-Farm Agricultural Production in the United States. Second Report, (Version 2 (2012).

25. Bennetzen, E. H., Smith, P. & Porter, J. R. Decoupling of Greenhouse Gas Emissions from Global Agricultural Production: 1970 - 2050. Glob. Chang. Biol. n/a-n/a (2015). doi:10.1111/gcb.13120

26. Lowenberg-deboer, J. & Lowenberg-deboer, J. The Precision Agriculture Revolution. 105–112 (2015).

27. Duvick, D. N. The Contribution of Breeding to Yield Advances in maize (Zea mays L.). Adv. Agron. 86, 83–145 (2005).

28. Precision Planting. vSet. (2016). Available at: (Accessed: 1st January 2016)

29. Corn and Soybean Digest. Sidedressing. Corn and Soybean Digest (2015). Available at: (Accessed: 1st January 2016)

30. Ag Alternatives. Y-Drop. (2014). Available at: (Accessed: 1st January 2016)

31. Gebbers, R. & Adamchuk, V. I. Precision agriculture and food security. Science 327, 828–31 (2010).

32. IBM Research. Precision agriculture. (2016). Available at: (Accessed: 12th January 2016)

33. Fischer, R. A. & Edmeades, G. O. Breeding and cereal yield progress. Crop Sci. 50, S-85-S-98 (2010).

34. Mansfield, B. D. & Mumm, R. H. Survey of plant density tolerance in U.S. maize germplasm. Crop Sci. 54, 157–173 (2014).

35. Kucharik, C. J. Contribution of planting date trends to increased maize yields in the central United States. Agron. J. 100, 328–336 (2008).

36. FAO. Production - Crops. FAOSTAT (2016). Available at:*/E. (Accessed: 27th November 2016)

37. Alexandratos, N. & Bruinsma, J. World Agriculture Towards 2030/2050: The 2012 Revision. (2012).

38. Capper, J. L. Is the grass always greener? Comparing the environmental impact of conventional, natural and grass-fed beef production systems. Animals 2, 127–143 (2012).

39. Ray, D. K., Mueller, N. D., West, P. C. & Foley, J. a. Yield Trends Are Insufficient to Double Global Crop Production by 2050. PLoS One 8, e66428 (2013).

40. Smith, P. et al. Competition for land. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 365, 2941–57 (2010).

41. Schmitz, C. et al. Land-use change trajectories up to 2050: insights from a global agro-economic model comparison. Agric. Econ. 45, n/a-n/a (2013).

42. Ray, D. K. & Foley, J. a. Increasing global crop harvest frequency: recent trends and future directions. Environ. Res. Lett. 8, 44041 (2013).

43. Jaggard, K. W., Qi, A. & Ober, E. S. Possible changes to arable crop yields by 2050. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 365, 2835–51 (2010).

44. Ray, D. K., Ramankutty, N., Mueller, N. D., West, P. C. & Foley, J. a. Recent patterns of crop yield growth and stagnation. Nat. Commun. 3, 1293 (2012).

45. Lobell, D. & Cassman, K. Crop yield gaps: their importance, magnitudes, and causes. Annu. Rev. (2009). doi:10.1146/annurevfienviron.041008.093740

46. Hall, A. J. & Richards, R. A. Prognosis for genetic improvement of yield potential and water-limited yield of major grain crops. F. Crop. Res. 143, 18–33 (2013).

47. Cassman, K. G., Dobermann, A., Walters, D. T. & Yang, H. Meeting Cereal Demand While Protecting Natural Resources and Improving Environmental Quality. Annu. Rev. Environ. Resour. 28, 315–358 (2003).

48. Peng, S., Cassman, K. G., Virmani, S. S., Sheehy, J. & Khush, G. S. Yield Potential Trends of Tropical Rice since the Release of IR8 and the Challenge of Increasing Rice Yield Potential. Crop Sci. 39, 1552 (1999).

49. Peng, S., Khush, G. S., Virk, P., Tang, Q. & Zou, Y. Progress in ideotype breeding to increase rice yield potential. F. Crop. Res. 108, 32–38 (2008).

50. GYGA. Global Yield Gap and Water Productivity Atlas. (2016). Available at: (Accessed: 1st January 2016)

51. Tollenaar, M. & Wu, J. Yield improvement in temperate maize is attributable to greater stress tolerance. Crop Sci. 39, 1597–1604 (1999).

52. Duvick, D. N. & Cassman, K. G. Post–Green Revolution Trends in Yield Potential of Temperate Maize in the North-Central United States Breeding Methods and Investment. (1999).

53. Grassini, P., Thorburn, J., Burr, C. & Cassman, K. G. High-yield irrigated maize in the Western U.S. Corn Belt: I. On-farm yield, yield potential, and impact of agronomic practices. F. Crop. Res. 120, 142–150 (2011).

54. Van Ittersum, M. K. et al. Yield gap analysis with local to global relevance-A review. F. Crop. Res. 143, 4–17 (2013).

55. Licker, R. et al. Mind the gap: how do climate and agricultural management explain the ‘yield gap’ of croplands around the world? Glob. Ecol. Biogeogr. 19, 769–782 (2010).

56. Foley, J. A. et al. Solutions for a cultivated planet. Nature 478, 337–42 (2011).

57. Mueller, N. N. D. et al. Closing yield gaps through nutrient and water management. Nature 1–28 (2012). doi:10.1038/nature11420

58. Fischer, R. A., Byerlee, D. & Edmeades, G. O. Can Technology Deliver on the Yield Challenge to 2050? in Expert Meeting on How to Feed the World in 2050 2050, (2009).

59. Sánchez, P. a. Tripling crop yields in tropical Africa. Nat. Geosci. 3, 299–300 (2010).

60. Cassman, K. G. & Grassini, P. Can there be a green revolution in Sub-Saharan Africa without large expansion of irrigated crop production? Glob. Food Sec. 2, 203–209 (2013).

61. Lucht, J. M. Public acceptance of plant biotechnology and GM crops. Viruses 7, 4254–4281 (2015).

62. Paarlberg, R. Starved for Science: How Biotechnology Is Being Kept Out of Africa. (Harvard University Press, 2009).

63. Carpenter, J. E. Peer-reviewed surveys indicate positive impact of commercialized GM crops. Nat. Biotechnol. 28, 319–321 (2010).

64. Klümper, W. & Qaim, M. A Meta-Analysis of the Impacts of Genetically Modified Crops. PLoS One 9, (2014).

65. Barrows, G., Sexton, S. & Zilberman, D. The impact of agricultural biotechnology on supply and land-use. Environ. Dev. Econ. 1–28 (2014). doi:10.1017/S1355770X14000400

66. National Academies of Sciences, Engineering, and M. Genetically Engineered Crops: Experiences and Prospects. (2016). doi:10.17226/23395

67. Searchinger, T. I. M., Hanson, C. & Lacape, J. Crop Breeding : Renewing the Global Commitment. World Resour. Inst. 1–20 (2014).

68. Gilbert, N. Cross-bred crops get fit faster. Nature (2014). Available at: (Accessed: 1st January 2016)

69. Gilbert, N. The race to create super-crops. Nature (2016). Available at: (Accessed: 1st January 2016)

70. Pierce, F. J. & Nowak, P. Aspects of precision agriculture. Adv. Agron. 67, (1999).

71. Burwood-Taylor, L. Agriculture Technology Investment Storms to $4.6bn in 2015 as Global Investors Take Note. AgFunder News (2016). Available at: (Accessed: 1st January 2016)

72. Upbin, B. Monsanto Buys Climate Corp For $930 Million. Forbes (2013). Available at: (Accessed: 1st January 2016)

73. Larson, D. F., Otsuka, K., Matsumoto, T. & Kilic, T. Should African rural development strategies depend on smallholder farms? An exploration of the inverse-productivity hypothesis. Agric. Econ. 45, n/a-n/a (2013).

74. NCGA. Economize Without Compromise. National Corn Yield Contest (2015). Available at: (Accessed: 1st January 2016)

75. Van Roekel, R. & Purcell, L. Student Researches Recipe for Record-Setting Soybean Yields. University of Arkansas Division of Agriculture Research and Extension (2012). Available at: (Accessed: 1st January 2016)

76. Robert, P. C. Precision agriculture: A challenge for crop nutrition management. Plant Soil 247, 143–149 (2002).

77. Perez, N. D. . & Rosegrant, M. W. . The impact of investment in agricultural research and development and agricultural productivity. 40 pages (2015).

78. Alston, J. M. J. M., Beddow, J. M. J. M. & Pardey, P. G. P. G. Mendel Versus Malthus: Research, Productivity and Food Prices in the Long Run. Agric. Econ. 325, 1209–1210 (2009).

79. Alston, J. M. et al. A Meta-Analysis of Rates of Return to Agricultural R&D. World (2000).

80. Jin, Y. & Huffman, W. E. Measuring public agricultural research and extension and estimating their impacts on agricultural productivity: new insights from U.S. evidence. Agric. Econ. n/a-n/a (2015). doi:10.1111/agec.12206